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Abstract 15 

Background 16 

COVID-19 is a new coronavirus that has spread from person to person throughout the world.  17 

Geographical disease surveillance is a powerful tool to monitor the spread of epidemics and 18 

pandemic, providing important information on the location of new hot-spots, assisting public 19 

health agencies to implement targeted approaches to minimize mortality. 20 
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Methods 21 

County level data from January 22-April 28 was downloaded from USAfacts.org to create heat 22 

maps with ArcMapTM for diagnosed COVID-19 cases and mortality. The data was analyzed 23 

using spatial and space-time scan statistics and the SaTScanTM software, to detect geographical 24 

cluster with high incidence and mortality, adjusting for multiple testing. Analyses were adjusted 25 

for age.  While the spatial clusters represent counties with unusually high counts of COVID-19 26 

when averaged over the time period January 22-April 20, the space-time clusters allow us to 27 

identify groups of counties in which there exists a significant change over time. 28 

Results 29 

There were several statistically significant COVID-19 clusters for both incidence and mortality. 30 

Top clusters with high rates included the areas in and around New York City, New Orleans and 31 

Chicago, but there were also several small rural clusters. Top clusters for a recent surge in 32 

incidence and mortality included large parts of the Midwest, the Mid-Atlantic Region, and 33 

several smaller areas in and around New York and New England.  34 

Conclusions 35 

Spatial and space-time surveillance of COVID-19 can be useful for public health departments in 36 

their efforts to minimize mortality from the disease. It can also be applied to smaller regions with 37 

more granular data.  38 

Keywords: Clusters, prospective space-time analysis, spatial analysis, COVID-19. 39 
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Background 41 

The COVID-19 pandemic is closely followed around the world, with daily estimates of 42 

diagnosed case counts and death for almost every country in the world. [1][2][3] Regional and 43 

local numbers are also important. Our focus here is on the cluster analysis methodology used to 44 

provide a comprehensive and effective disease surveillance of COVID-19 with which it is 45 

possible to summarize results in a clear and meaningful manner where the hotspots (clusters) are 46 

located, and to identify where such clusters are located and whether some clusters seem to be 47 

emerging or spreading. While descriptive maps of COVID-19 cases or death counts provide 48 

useful information on the disease, it can be hard to distinguish random variation from true hot-49 

spots. Spatial and space-time scan statistics can detect groups of neighboring counties with high 50 

rates of COVID-19, and determine whether they are statistically significant. The use of heat 51 

maps complemented by scan statistics allows us to better understand the geographic distribution 52 

of COVID-19 across the contiguous USA.  53 

There are various reasons for evaluating the geographical distribution of COVID-19, and each 54 

requires a different type of scan statistic. In this paper, we give examples of each type of 55 

question and its corresponding scan statistic. 56 

COVID-19 will continue to be a major threat to older people until herd immunity arrives, either 57 

through natural disease or a potential future vaccine. In order to understand geographical 58 

differences in movement along the path towards herd immunity, we can use a purely spatial scan 59 

statistic and the cumulative number of diagnoses or deaths as a proportion of the population. 60 

While it would be better to use large-scale random antibody testing, that is not yet available.  61 
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With cumulative data, it is not possible to distinguish areas with a currently high disease 62 

incidence versus areas where things used to be bad but where the spread has subsided. For an 63 

evaluation of the current situation, it is instead appropriate to only analyze the last one, two or 64 

three weeks of data, while still employing the purely spatial scan statistic. 65 

A purely spatial analysis with only a few weeks of data cannot distinguish high incident areas 66 

that have been high for a while from areas where the incidence is increasing. The detection of the 67 

latter is interesting even if they are not yet as high as many other parts of the country. Such 68 

analyses can be done using all the cumulative data with a prospective space-time scan statistic, 69 

adjusting for geographical differences. In essence, each geographical area is evaluated as to 70 

whether the incidence or mortality rate has increased compared to what it used to be in that same 71 

area.  72 

A fourth option is to do a prospective space-time analysis without adjusting for geography, as 73 

performed by. Desjardins et al [4]. Such an analysis detects areas that are high during recent days 74 

or weeks, when compared to the national average in both current and past time, while it can but 75 

does not have to be higher than the prior rates in the same area. The purpose of such an analysis 76 

is hence different from a space-time adjusted analysis that adjusts for geographical variation, and 77 

the two types of analysis complements each other.  78 

 79 

In order to illustrate how such a comprehensive set of methods can be applied, we used COVID-80 

19 data for US counties, to evaluate the geographical distribution of infection cases and also for 81 
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deaths associated with COVID-19. We created informative heat maps with superimposed cluster 82 

rings that identify significant clusters from SaTScanTM based on the Poisson distribution. [5] 83 

Materials and Methods 84 

 85 

COVID-19 Data 86 

COVID-19 data were obtained from the not-for-profit organization USA facts, 87 

at www.usafacts.org. [6] They have in turn obtained the data from the Centers for Disease 88 

Control and Prevention. [7] as well as from state and county level public health agencies. 89 

Confirmed diagnosed cases and deaths are given as cumulative counts starting January 22, 2020 90 

with a daily update. Since only confirmed diagnoses are used, many cases are missed and the 91 

proportion of missed cases will depend on the amount of testing conducted, which may vary 92 

geographically.  93 

For the purely spatial analyses we used data for January 22-April 20 and the two week period of 94 

April 7 – April 20. For the space-time analysis we used data for January 22-April 28. 95 

Age adjustment 96 

COVID-19 diagnoses and deaths vary greatly by age, and since counties have different age 97 

distribution, it is important to adjust the spatial analyses for age. For each county, we used the 98 

age-specific data from the Census Bureau.[8] For COVID-19 diagnoses and deaths, we used the 99 

age-distribution reported by CDC.[9] Age was adjusted for using indirect standardization 100 
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 101 

Choropleth Maps 102 

For descriptive purposes, choropleth maps were constructed. For the 3,108 counties, the age-103 

adjusted rates were ranked from lowest to highest and sorted into quintiles. In the figures, each 104 

county is colored from dark green (lowest COVID-19 rates), to light green, yellow, orange, and 105 

dark red (highest COVID-19 rates). The legend gives the range of values for each shade of color, 106 

which is different for different maps. This type of coloring allows the reader to quickly scan the 107 

US map and to eyeball where parts of the USA have high or low rates of this virus.  108 

The Spatial Scan Statistic 109 

To detect geographical areas with a statistically significant excess number of COVID-19 110 

diagnoses or deaths, we used the spatial scan statistic, a widely used method for geographical 111 

disease surveillance. This method detects and determines statistical significance of geographical 112 

cluster without having to pre-specify the cluster size or location, while automatically adjusting 113 

for the multiple testing that exists in the large number of potential clusters evaluated.  114 

The spatial scan statistic applies a moving circular window on the map, centered on each of 115 

many possible grid points positioned throughout the study region. County centroids were used 116 

for the grid points to ensure that each county could be a potential cluster by itself. For each grid 117 

point, the radius of the window is varied continuously in size from zero up to some upper limit 118 

that we set to 10% of the total population at risk. This way the circular window is flexible both in 119 

location and size. Overall, this method creates many thousands of distinct geographical circles 120 
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with different sets of neighboring counties within them. Each circle is a possible candidate for a 121 

cluster.  122 

Using the observed and age-adjusted expected counts for each county, the Poisson distribution 123 

was used to model the random nature of the counts. P-values were calculated by fitting the 124 

Gumbel distribution to 999 random data sets generated under the null hypothesis of equal risk 125 

throughout the country. [10] 126 

The Prospective Space-Time Scan Statistic 127 

To detect recent increases, a prospective space-time cluster analysis was performed for both 128 

COVID-19 cases and for mortality. A nonparametric spatial adjustment was used in order to 129 

detect areas with localized temporal increases, while not comparing rates across geographical 130 

regions. This means that a cluster can be detected if there is a temporal increase in the area even 131 

if that area still has a lower rate than the rest of the country.  132 

The prospective space-time scan statistic identifies newly emerged clusters by using a cylindrical 133 

three-dimensional scanning window. The circular base is the same as for the purely spatial scan 134 

statistic while the height of the cylinder corresponds to time. For each circular location and size, 135 

different time lengths are evaluated up to a maximum of 14 days. In the prospective version used 136 

here, only cylinders that include the last day of the study period are used, as we are only 137 

interested in emerging clusters but not historical ones. The prospective space-time analysis the 138 

scan statistic can be used for time-periodic surveillance in which the analysis is repeated each 139 

week. [10][11] 140 

All analyses were conducted using the free SaTScanTM software (www.satscan.org). [5] 141 
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Results 142 

Cumulative Data 143 

For January 22-April 20, 2020, the geographical distribution of confirmed COVID-19 diagnoses 144 

are depicted in Figure 1, with 38 statistically significant clusters (p<0.05). Table 1 provides 145 

detailed information on the top 20 clusters with the smallest p-values. The top cluster was in and 146 

around New York City, with over ten times as many diagnosed cases compared to the rest of the 147 

country. Cluster 2 is in and around New Orleans, Louisiana, with relative risk (RR) 5.7. More 148 

unexpectedly, there are several small clusters with very high relative risk, including Marion 149 

County, Ohio; Blaine County, Idaho; Lincoln County, Arkansas; and Louisa County, Iowa.  150 

For COVID-19 deaths, there are ten significant clusters for the same time period, as 151 

shown in Figure 2 and Table 2. Again, the top cluster is in the New York-New Jersey-152 

Connecticut area, with nearly 21 million people, and with a COVID-19 mortality that is 14 times 153 

higher than the rest of the United States. In general, results are similar for diagnoses and deaths, 154 

although the latter analysis has fewer clusters due to a smaller sample size.  155 

Recent Situation 156 

For public health action, the more recent situation is of great interest. For the 14 days period 157 

April 7-20, 2020, there were 43 statistically significant clusters with a high rate of diagnosed 158 

cases, as shown in Figure 3. Table 3 provides details about the top 20 statistically significant 159 

clusters. The New York City metropolitan area is still the top cluster, while Marion, Ohio; 160 

Chicago; and New Orleans are number 2, 3 and 4 respectively. For deaths during the same 161 

period, there are nine significant clusters, as shown in Figure 4 and Table 4. The New York 162 

cluster is ranked number 1, with RR=13.5.   163 
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Emerging Problem Areas 164 

The purely spatial analysis does not provide information about temporal changes. When using 165 

the prospective space-time scan statistic, while adjusting for purely geographical variation, we 166 

found six statistically significant clusters of rapidly increasing rates of diagnosed COVID-19 167 

cases, as shown in Figure 5 and Table 5. The top cluster is in the Upper Midwest, stretching from 168 

Kansas and Missouri in the south to the Canadian border. The second cluster consists of several 169 

states in the Mid-Atlantic regions. There are also four geographically smaller clusters of 170 

increased COVID-19 activity in and around New York City. Figure 6 and Table 6 shows the 171 

equivalent results for mortality. The top cluster with a rapid increase in mortality is in Southern 172 

New England, followed by a huge cluster consisting of most of the Midwest. 173 

Discussion 174 

To minimize COVID-19 mortality, it is important to monitor the spread of the disease in both 175 

space and time. Since older people have a much higher exposure and infection fatality ratio, it is 176 

important that they are protected and isolated until herd immunity is reached. For that, it is 177 

important both to know what places are closer to herd immunity and the places that currently 178 

have high infection and mortality rates. 179 

The diagnosis and death data have different strength and weaknesses. The diagnosis data has the 180 

major weakness, in that the rates both depend on the presence of the disease as well as on the 181 

amount of testing. For a cluster to be detected, both are required. Hence, the analysis may have 182 

missed high incidence areas with low levels of testing. The mortality data is less dependent on 183 

testing, and it is reassuring that the two data sets produce somewhat similar results. One 184 
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advantage of the diagnosis analyses is that it provides earlier indications about COVID-19 185 

activity since the disease is typically diagnosed before death. An even earlier indication of 186 

COVID-19 activity may be syndromic data on influenza like illness, and spatial scan statistics 187 

have also been applied to such data. [12]  188 

It is popular to compare COVID-19 mortality between countries and regions, but most such 189 

comparisons do not adjust for age, which is critical since COVID-19 is highly age dependent. It 190 

is also critical to note that some countries and regions are further along to reach herd immunity, 191 

and it is not necessarily the areas with fewer deaths that will have the fewest deaths by the time 192 

the pandemic is over. 193 

This study applies modern disease surveillance methodology in addition to using choropleth 194 

maps that clearly show the relative ranking of counties’ virus cases and deaths. While the 195 

descriptive choropleth maps give an overall view of the contiguous US regarding the relative 196 

standings of counties for the COVID-19 virus levels, SaTScanTM provides the methodology to 197 

identify spatial clusters across the entire study period and also for the last 14 days, testing for 198 

significance of each identified cluster. Such spatial clusters show the geographic distribution of 199 

this virus when averaged across the study period. In addition to the spatial clusters, SaTScanTM 200 

also identified emerging clusters by using the prospective space-time analysis. These are 201 

outbreaks of COVID-19 cases and death within a window of 14 days and such information is 202 

helpful in understanding where in the contiguous US the virus is spreading the most.  203 

While this study looked at COVID-19 across a large country, these types of analyses are equally 204 

or even more important to do for smaller regions in order to detect neighborhood clusters where 205 
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the elderly require extra protection. That will require data at a finer geographical resolution 206 

available to many health departments but often publicly unavailable.  207 

As COVID-19 is a rapid evolving pandemic, it is critical to have up to date information on its 208 

spread, of the type that cannot be provided by academic journals. As a complement to this paper, 209 

we will provide updated maps online. In near time, this will provide rapid up to date information 210 

regarding the United States. For the longer term, it will provide a historical record for how the 211 

disease spread over time and place.  212 

Conclusions 213 

It is possible to quickly identify significant spatial clusters of COVID-19 cases and death based 214 

on county level data. However, different public health questions require different types of spatial 215 

statistical analyses. With properly focused analyses, this methodology can be useful to public 216 

health agencies to appropriately focus their COVID-19 counter measures.  217 
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 272 

 273 

Figure 1: Geographical distribution and clusters of diagnosed COVID-19 cases for January 22-274 

April 20, 2020. 275 

 276 
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 277 

 278 

Figure 2: Geographical distribution and clusters of COVID-19 deaths for January 22-April 20, 279 

2020. 280 

 281 
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282 
Figure 3: Geographical distribution and clusters of diagnosed COVID-19 cases for April 7-April 283 

20, 2020.  284 

 285 
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 286 

Figure 4: Geographical distribution and clusters of COVID-19 deaths for April 7-April 20, 2020. 287 
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 288 

Figure 5: Geographical distribution and space-time clusters of diagnosed COVID-19 cases for 289 

January 22-April 28, 2020, with clusters adjusted for the geographical variation. 290 

 291 
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 292 

Figure 6: Geographical distribution and space-time clusters of COVID-19 deaths for January 22-293 

April 28, 2020, with clusters adjusted for the geographical variation. 294 

 295 

 296 

 297 
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Cluster Number Locations Relative Risk  Population 

1 New York, New Jersey, Connecticut 10.4 22,005,050 

2 Louisiana (New Orleans) 5.7 1,037,284 

3 Michigan (Detroit) 2.7 3,880,899 
4 Cook County, IL (Chicago) 1.9 5,150,233 
5 Marion County, OH (Marion) 13.0 65,093 
6 Georgia (Atlanta) 4.9 274,657 
7 Pickaway County, OH (Circleville) 8.9 58,457 
8 Marion County, IN (Indianapolis) 1.9 964,582 

9 Minnehaha County, SD (Sioux Falls) 3.2 193,134 

10 Miami-Dade County, FL (Miami) 1.5 2,716,940 
11 Blaine County, ID (Hailey) 8.4 23,021 
12 Caddo Parish, LA (Shreveport) 2.3 240,204 
13 Lincoln County, AR (Star City) 8.1 13,024 

14 Eagle County, CO (Edwards Micropolitan 
Statistical Area) 3.9 55,127 

15 Louisa County, IA (Louisa) 8.0 11,035 

16 Apache and Navajo Counties, AZ, McKinley 
County, NM (Gallup) 1.9 254,178 

17 Summit County, UT (Park City) 3.5 42,145 
18 Hall County, NE (Grand Island) 2.9 61,353 
19 Tama County, IA (Tama) 4.7 16,854 
20 Morgan and Weld Counties, CO (Greely) 1.7 353,560 

 299 

 300 

Table 1: Statistically significant spatial clusters (p<0.05) of diagnosed COVID-19 cases for 301 

January 22-April 20, 2020, adjusted for age and multiple testing. 302 
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 306 

 

Cluster Number Locations Relative Risk  Population 

1 New York, New Jersey, Connecticut 14.2 20,979,275 

2 Michigan (Detroit) 4.7 3,880,899 

3 Louisiana (New Orleans) 6.3 1,163,888 

4 Georgia (Atlanta) 8.9 185,388 
5 Cook County, IL (Chicago) 1.6 5,150,233 
6 Indiana (Indianapolis) 1.9 1,372,565 

7 King County, WA (Seattle) 1.6 2,252,782 

8 Caddo Parish, LA (Shreveport) 2.5 240,204 
9 Weld County, CO (Greeley) 2.4 324,492 

10 Woodson County, KS (Yates Center) 2.9 165,429 
 307 

Table 2: Statistically significant spatial clusters (p<0.05) of COVID-19 deaths for January 22-308 

April 20, 2020, adjusted for age and multiple testing. 309 

 310 

 

Cluster Number Locations Relative 
Risk  Population 

1 New York, New Jersey, Connecticut, 
Pennsylvania, Rhode Island, Massachusetts 8.4 31,835,482 

2 Marion County, OH (Marion) 24.0 65,093 

3 Cook County, IL (Chicago) 2.1 5,150,233 

4 Louisiana (New Orleans) 3.6 1,037,284 

5 Michigan (Detroit) 2.2 3,880,899 
6 Pickaway County, OH (Circleville) 16.3 58,457 
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7 Georgia (Atlanta) 5.3 274,657 
8 Minnehaha County, SD (Sioux Falls) 5.3 193,134 
9 Virginia, Maryland, Washington D.C. 1.5 4,500,170 

10 Lincoln County, AR (Star City) 14.5 13,024 
11 Louisa County, IA (Louisa) 14.4 11,035 
12 Marion County, Indiana (Indianapolis) 1.8 964,582 
13 Wayne County, NC (Goldsboro) 3.6 123,131 
14 Arizona, New Mexico 2.7 254,178 
15 Miami-Dade County, FL 1.4 2,716,940 
16 Hall County, Nebraska (Grand Island) 4.6 61,353 
17 Tama and Marshall Counties, IA (Marshall) 4.5 56,223 

18 Chambers and Tallapoosa Counties, AL 
(Alexander City) 3.2 73,621 

19 Hall County, GA (Gainesville) 2.3 204,441 
20 Harrisonburg City, VA 3.9 53,016 

 311 

 312 

 313 

Table 3: Statistically significant Spatial Clusters (p<0.05) of Age Adjusted COVID-19 Cases for 314 

April 7-April 20, 2020, adjusted for age and multiple testing. 315 
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Cluster Number Locations Relative Risk  Population 

1 New York, New Jersey, Connecticut 13.5 22,633,803 

2 Michigan (Detroit) 4.2 4,533,447 

3 Louisiana (New Orleans) 4.3 1,454,727 

4 Georgia (Albany) 5.5 287,311 

5 Cook County, IL (Chicago) 1.8 5,150,233 

6 Indiana (Indianapolis) 2.1 1,372,565 

7 Woodson County, KS (Yates Center) 3.5 165,429 

8 Henrico County, VA (Greater Richmond Region) 2.4 330,818 

9 Caddo Parish, LA (Shreveport) 2.5 240,204 

 322 

 323 

Table 4: Statistically significant spatial clusters (p<0.05) of COVID-19 deaths for April 7-April 324 

20, 2020, adjusted for age and multiple testing. 325 
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Space-time Clusters of COVID-19 Cases: January 22-April 20, 2020 

Cluster Number Locations 
Relative 
Risk in 
Cluster 

Cluster Population 

1 Upper Midwest (MT, WY, CO, KA, OK, MO, IL, 
IN, MI, IA, NE, SD, ND, MN, WI) 3.9 48,702,395 

2 Appalachian Region (PA, OH, KY, WV, MD, 
DE, VA, TN, NC, SC, GA, IN) 3.8 59,455,758 

3 New England (MA, VT, NH, CT, RI, NY) 3.7 14,559,398 

4 

NJ (Mercer County, Middlesex County, 
Somerset County, Hunterdon County, 

Burlington County, Monmouth County, 
Union County, Camden County, Morris 
County, Ocean County, Essex County, 

Warren County) NY (Richmond County)      
PA (Bucks County, Philadelphia County, 

Montgomery County) 

2.9 9,295,418 

5 
NJ (Bergen County, Passaic County)  

NY (Rockland County, New York County, 
Bronx County) 

2.4 4,806,730 

6 NY (Kings County, Queens County) 2.2 4,813,761 
 333 

 334 

Table 5: Statistically significant space-time clusters of diagnosed COVID-19 cases for January 335 

22-April 28, 2020, adjusted for geographical variation and multiple testing. 336 
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 343 

 

Cluster Number Locations Relative 
Risk  Population 

1 Northeastern New England Cluster (MA, VT, CT, 
NH, RI, NY) 5.0 14,038,196 

2  East Coast States (OH, WV, VA, KY, NC, PA, MD, 
DE) 4.8 51,668,127 

3 Large Central Western United States including 
TX 4.3 116,230,157 

4 Michigan and Surrounding States 3.9 21,178,275 

5 New Jersey, New York 3.8 3,863,516 

6 Kings County, New York 2.9 2,559,903 

7 Queens County, New York 2.9 2,253,858 

8 NY (Bronx County, New York County) 2.8 3,046,913 

9 NJ (Middlesex County, Monmouth County, 
Richmond County) 3.4 1,920,000 

10 Nassau County, New York 3.2 1,356,924 

 344 

Table 6: Statistically significant space-time clusters of COVID-19 deaths for January 22-April 345 

28, 2020, adjusted for geographical variation and multiple testing. 346 
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